Tetrahedron Letters No. 38, pp. 4579-4585, 1966. Pergamon Press Ltd. Printed in Great Britain.
N.M.R. EXP台RIMENTS ON KETALS. VII ${ }^{(1)}$. restricted rotation of subst truents (other than merhyl) IN CYCLOHEXANOID SYSTEMS. M. Anteunis, E. Coene ${ }^{(2)}$ and D. Tavernier ${ }^{(3)}$. Laboratory of Organic Chemistry, State University of Ghent-Belgium. (Received 28 July 2966)

The conformation of 1,3-dioxanes is relatively unknown. I.R. studies have proved the conformational homogeneity of 1,3-dioxane itself ${ }^{(4)}$, and dipole moment measurements indicate that the most stable conformation is the chair form ${ }^{(5)}$. The barrier to ring inversion of 1,3 -dioxane and of 5,5 -dimethyldioxane has been carefully determined ${ }^{(6,7)}$. English workers have studied some 5-substituted-1,3-dioxanes ${ }^{(5)}$. Electron diffraction or X-ray data for 1,3 -dioxanes seem to be inexistent, but a recent study by these methods on 2-phenyl-1,3dithiane has established the chair conformation for this ring system ${ }^{(8)}$.

On the basis of the rotational barrier in methanol (1,1 kcal) the enthalpy difference between the chair and the "boat" form of 1,3-dioxanes is estimated at $2,2 \mathrm{kcal}^{(5)}$ and the prem diction is made : ..."substituted derivatives may well have stable flexible forms". For the boat form of 1,3-dioxane, the
two forms α and β should be considered. These are classical boat forms, but an energy

β
α minimum will be obtained by a slight rotation to the "twist-boat" conformation. The cited estimation of $2,2 \mathrm{kcal}$ apolies to form α. Of all boat forms, arising by pseudorotation, only the α form has a plane of symmetry. Very recently a boat conformation has been advanced for 4-tert.butyl-4-methyl-1,3-dioxane ${ }^{(9)}$. We have now prepared a number of 5,5-disubstituted-1,3dioxanes (see table I) and recorded their P.M.R. spectra at various temperatures. Fig. 1 shows the P.M.R. spectrum of 5-methyl-5-ethyl-1,3-dioxane at about -100°, well below the coalescence temperature. The striking feature of the low

FIGURE 1
temperature spectrum is that in the region where the protons
of C_{4} and C_{6} absorb (denoted in the following text as K_{4} and H_{6}) two partially overlapping AB systems can be detected. This low temperature feature is common to all the compounds studied, except for 5,5-dimethyl-, 5,5-diethyl- and 5-ethyl-5-nebutyl-1,3-dioxane.

The two overlapping $A B$ systems could be explained by assuming that the molecules take up boat conformation. In substituted 1,3-dioxanes boat forms do not have a plane of symmetry - thus rendering H_{4} and H_{6} non-identical (the one exception, the classical boat form α, is energetically unfavourable, because of the strong repulsion between the hydrogen on the C_{2} atom and the alkyl substituent of the C_{5} atom). On this basis however, it would not be possible to explain the single $A B$ system in the three above mentioned compounds. The hypothesis of predominant boat conformations in the compounds studied may also be rejected on theoretical grounds. The boat conformations become energetically attractive if excessive strain in the chair conformation is effectively relieved by adopting the boat conformations. We estimate that an axial methyl (or any non-tertiary alkyl group) in the 5 position of 1,3 -dioxane introduces but little strain. The magnitude of this strain may be crudely estimated at 0.7 kcal from the $-\Delta_{G_{a} \rightarrow e}$ value for OMe in methoxycyclohexane $(0.7 \mathrm{kcal})^{(10)}$; in both cases the strain is due to a clinal $0-\mathrm{CH}_{2}$ interaction of a skew butane type unit.
This small strain is but very incompletely releaved by taking up the boat conformation. This is confirmed on inspection of
a model of these compounds. Chair conformations like in fig. 2 are therefore more probable for 5,5-dialkyldioxanes. The two partially overlapping $A B$ systems in some of the compounds, and their absence in some others can be explained using the Newmann projection formulas of the two inverting chair conformations I and II viewed along the $C_{4}-C_{5}$ axis.

In I proton K_{a} is cli-

FIGURE 2

 nal with resnect both to R_{5} and $\mathrm{C}_{5}-\mathrm{C}_{6}$, while H_{b} is in the different surroundings of $R^{\prime}{ }_{5}$ and R_{5}. Conformation I thus gives an $A B$ pattern for these protons. The axial proton H_{b} in II is now differently surrounded than H_{a} is in I, for R_{5}, has been substituted for R_{5}. At first sight the equatorial proton H_{a} in II seems to be identically surrounded as H_{b}.is in I , and therefore we expect that the second visible $A B$ pattern (coming from conformation II) should overlap with the first (from conf. I) in its equatorial part ${ }^{(11)}$. This is not so. Unlike with 5-hydroxy-1,3-dithianes (12), the equatorial H_{4} and H_{6} protons in 1,3-dioxanes behave ${ }^{(1)}$ like similar protons in carbon hexacycles, nl . the equatorial protons absorb at lower field values than the axial ones. It is indeed clear from the spectra (see also table, where Δ_{e} is to
be compared with $\Delta a: \Delta e\rangle \Delta$ a) that the two visible $A B$ patterns are more differentiated in the low field portion (Δ e) : that is in their equatorial parts. Inspection of the Newmann profections (fig. 2) gives a rational explanation. Suppose that $R_{5}=M e$ and $R_{5}=$ higher alkyl group. A difference in the immediate environment of H_{a} in I and on the other hand of H_{b} in II, is to be expected if the rotation of R_{5} is hindered. The more pronounced non-identity of H_{b} in I corresponding to H_{a} in II, illustrates that axial groups have a more restricted rotation than equatorial groups.

The $C_{\alpha}-C_{\beta}$ bond in the R_{5} sidechain of I is thus preferentially turned away from the cycle, pointing into the direction of H_{b}, the latter thus being shifted (i.e. upfield) from H_{a} in II, where now R_{5} is equatorial.

It is obvious then that the effect will not be found when $\mathrm{R}_{5}=\mathrm{R}_{5}$ and also that it will not be pronounced when both R_{5} and R_{5} are different from methyl. In connection with the actual situation, where groups are Dlanted in a (C)-C-(C) moiety, it has also been found that unequal rotamer population can also be demonstrated for groups in the (C)-C-(0) moiety of the molecule ${ }^{(13)}$.

Acknowledgement.

The "Fonds voor Collectief Fundamenteel Wetenschappelijk Onderzoek" is thanked for financial support. E.C. is indebted to the "Instituut ter Aanmoediging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw" (I.W.O.N.L.), while
TABLE.
Shifts and coupling Values (in cps at 56.4 Mc) for the (two) AB Patterns of
4 and 6 Protons in 5,5-disubstituted-1,3-Dioxanes at low Temperature (ca $-100^{\circ} \mathrm{C}$).

Substituents	Me, Me	Et, Et	Et, n.Bu	Me, Et	$\mathrm{Me}, \mathrm{n} . \mathrm{Pr}$	Me , $2 \cdot \mathrm{Pr}$	$\mathrm{Me}, \mathrm{n} . \mathrm{Pe}$
$\mathrm{J}_{1} /\left(\mathrm{V}_{0} \delta\right)_{1}$					$1 /$	$\text { 26.0 } 2$	
	-	-	-	$11 / 24.0$		11/2	(a)
$\Delta_{\text {ef }} /(\mathrm{b})$	-	-	-		2.2	7	$\Delta \mathrm{e}$

Substituents	Me, cyclo-Pe	Me, cyclo-Hex	(a) Qualitatively the equatorial part shows an
inflection of the lowest field peak. The			

$$
\Delta_{a} \text { refers to the same difference between }
$$

D.T. thanks the Mationaal Fonds voor Wetenschappelijk Onderzoek".

References.
(1) Part. VI. M. Anteunis, D. Tavernier and F. Borremans; Bull.Soc.Chim.Belges, 25, 396 (1966).
(2) Scholar of the "I.W.O.N.I.".
(3) Aspirant of the NNationaal Fonds voor Wetenschappelijk Onderzoek".
(4) P.A. Laurent and P.Farte; Bull.Soc.Chim.France, 1376 (1958).
(5) E.L.Eliel and co-authors "Conformational Analysis"

John Wiley \& Sons, 1965, p. 249 and references therein.
(6) H.Friebolin, S.Kabuss, W.Maier and A.LUttringhaus; Tetrah. Letters, 683 (1962).
(7) H.G.Schmid, H.Friebolin, S.Kabuss and R.Mecke; Spectrochimica Acta, 22,623 (1966).
(8) H.T.Kalff and A.Romers; Acta cryst., 20, 490 (1966).
(9) J. Delmau and J.Duplan; Tetrah.Letters, 2693 (1966).
(10) This is the recommended value, see ref. (4).
(II) The intensities of the two overlapping $A \dot{B}$ systems are about the same, as the two conformations I and II have, in this particular case, nearly the same free energy.
(12) R.J.Abraham and W.A.Thomas; J.Chem.Soc., 335 (1963).
(13) D.Tavernier and M.Anteunis; to be published.

